
M o d e l O p s D a t a O p s D e
 O p s

The Big Book
of MLOps

eBook

A data-centric approach
to establish and scale
machine learning

J O S E P H B R A D L E Y | R A F I K U R L A N S I K | M A T T T H O M S O N | N I A L L T U R B I T T

Contents

A U T H O R S :

Joseph Bradley

Lead Product Specialist

Rafi Kurlansik

Lead Product Specialist

Matt Thomson

Director, EMEA Product Specialists

Niall Turbitt

Lead Data Scientist

2E B O O K : T H E B I G B O O K O F M L O P S

C H A P T E R 1 : Introduction 3

People and process 4

 People 5

 Process 6

Why should I care about MLOps? 8

Guiding principles 9

C H A P T E R 2 : Fundamentals of MLOps 1 1

Semantics of dev, staging and prod 1 1

ML deployment patterns 15

C H A P T E R 3 : MLOps Architecture and Process 19

Architecture components 19

 Data Lakehouse 19

 MLflow	 19

 Databricks	and	MLflow	Autologging	 20

 Feature Store 20

 MLflow	Model	Serving	 20

 Databricks SQL 20

 Databricks Workflows	and	Jobs 20

Reference architecture 21

 Overview	 22

 Dev 23

 Staging 27

 Prod 30

The	past	decade	has	seen	rapid	growth	in	the	adoption	of	machine	learning	(ML).	While	the	early	

adopters	were	a	small	number	of	large	technology	companies	that	could	afford	the	necessary	resources,	

in	recent	times	ML-driven	business	cases	have	become	ubiquitous	in	all	industries.	Indeed,	according	to	

MIT	Sloan	Management	Review,	83%	of	CEOs	report	that	artificial intelligence (AI) is a strategic priority.	

This	democratization	of	ML	across	industries	has	brought	huge	economic	benefits,	with	Gartner estimating

that $3.9T in business value	will	be	created	by	AI	in	2022.

However,	building	and	deploying	ML	models	is	complex.	There	are	many	options	available	for	achieving	

this	but	little	in	the	way	of	well-defined	and	accessible	standards.	As	a	result,	over	the	past	few	years	we	

have	seen	the	emergence	of	the	machine	learning	operations	(MLOps)	field.	MLOps is a set of processes

and automation for managing models, data and code to improve performance stability and long-term

efficiency in ML systems. Put simply, MLOps = ModelOps + DataOps + DevOps.

The	concept	of	developer	operations	(DevOps)	is	nothing	new.	It	has	been	used	for	decades	to	deploy	

software	applications,	and	the	deployment	of	ML	applications	has	much	to	gain	from	it.	However,	strong	

DevOps	practices	and	tooling	alone	are	insufficient	because	ML	applications	rely	on	a	constellation	of	

artifacts	(e.g.,	models,	data,	code)	that	require	special	treatment.	Any	MLOps	solution	must	take	into	

account	the	various	people	and	processes	that	interact	with	these	artifacts.

Here	at	Databricks	we	have	seen	firsthand	how	customers	develop	their	MLOps	approaches,	some	of	

which	work	better	than	others.	We	launched	the	open	source	MLflow project to help make our customers

successful	with	MLOps,	and	with	over	10	million	downloads/month	from	PyPI	as	of	May	2022,	MLflow’s	

adoption	is	a	testament	to	the	appetite	for	operationalizing	ML	models.

This	whitepaper	aims	to	explain	how	your	organization	can	build	robust	MLOps	practices	incrementally.	

First,	we	describe	the	people	and	process	involved	in	deploying	ML	applications	and	the	need	for	

operational	rigor.	We	also	provide	general	principles	to	help	guide	your	planning	and	decision-making.	Next,	

we	go	through	the	fundamentals	of	MLOps,	defining	terms	and	broad	strategies	for	deployment.	Finally,	we	

introduce	a	general	MLOps	reference	architecture,	the	details	of	its	processes,	and	best	practices.

CHAPTER 1 :

Introduction

Note: Our prescription for MLOps is general to

any set of tools and applications, though we give

concrete examples using Databricks features

and functionality. We also note that no single

architecture or prescription will work for all

organizations or use cases. Therefore, while we

provide guidelines for building MLOps, we call out

important options and variations. This whitepaper

is written primarily for ML engineers and data

scientists wanting to learn more about MLOps,

with high-level guidance and pointers to more

resources.

3E B O O K : T H E B I G B O O K O F M L O P S

https://sloanreview.mit.edu/projects/artificial-intelligence-in-business-gets-real/
https://www.gartner.com/en/newsroom/press-releases/2018-04-25-gartner-says-global-artificial-intelligence-business-value-to-reach-1-point-2-trillion-in-2018
https://www.gartner.com/en/newsroom/press-releases/2018-04-25-gartner-says-global-artificial-intelligence-business-value-to-reach-1-point-2-trillion-in-2018
https://en.wikipedia.org/wiki/ModelOps
https://en.wikipedia.org/wiki/DataOps
https://en.wikipedia.org/wiki/DevOps
https://www.mlflow.org/

People and process

Figure 1

Data Governance Officer

Dat1

Engineer

Data Scientist

ML Engineer

Business Stakeholder

Dataa

Preparation

Modela

Validation

Evplorator{a

Data unal{sis

MonitoringMode�

Training

Deplo{�entFeature

Engineering

0 1 2 3 4 65

M L W O R K F L O W A N D P E R S O N A S

4E B O O K : T H E B I G B O O K O F M L O P S

People
Building	ML	applications	is	a	team	sport,	and	while	in	the	real	world	people	“wear	many	hats,”	it	is	still	

useful	to	think	in	terms	of	archetypes.	They	help	us	understand	roles	and	responsibilities	and	where	

handoffs	are	required,	and	they	highlight	areas	of	complexity	within	the	system.	We	distinguish	between	

the	following	personas:

Responsible for using the

model to make decisions for

the business or product, and

responsible for the business

value that the model is

expected	to	generate.

Responsible for deploying

machine learning models to

production	with	appropriate	

governance, monitoring and

software	development	best	

practices such as continuous

integration and continuous

deployment	(CI/CD).

Responsible for

understanding the business

problem,	exploring	available	

data to understand

if machine learning is

applicable, and then training,

tuning and evaluating a

model	to	be	deployed.

Responsible for building

data pipelines to process,

organize and persist data

sets for machine learning

and	other	downstream	

applications.

Data
Engineer

Data
Scientist

ML
Engineer

Business
Stakeholder

Data
Governance
Officer

Responsible for ensuring

that data governance,

data privacy and other

compliance measures are

adhered to across the

model development and

deployment	process.	Not	

typically involved in day-to-

day	operations.

M L P E R S O N A S

5E B O O K : T H E B I G B O O K O F M L O P S

https://en.wikipedia.org/wiki/CI/CD

Process
Together,	these	people	develop	and	maintain	ML	applications.	While	the	development	process	follows	

a	distinct	pattern,	it	is	not	entirely	monolithic.	The	way	you	deploy	a	model	has	an	impact	on	the	steps	

you	take,	and	using	techniques	like	reinforcement	learning	or	online	learning	will	change	some	details.	

Nevertheless,	these	steps	and	personas	involved	are	variations	on	a	core	theme,	as	illustrated	in	Figure	1	

above.		

Let’s	walk	through	the	process	step	by	step.	Keep	in	mind	that	this	is	an	iterative	process,	the	frequency	of	

which	will	be	determined	by	the	particular	business	case	and	data.	

Data preparation
Prior	to	any	data	science	or	ML	work	lies	the	data	engineering	needed	to	prepare	production	data	and	make	

it	available	for	consumption.	This	data	may	be	referred	to	as	“raw	data,”	and	in	later	steps,	data	scientists	

will	extract	features	and	labels	from	the	raw	data.

Exploratory data analysis (EDA)
Analysis is conducted by data scientists to assess statistical properties of the data available, and determine

if	they	address	the	business	question.	This	requires	frequent	communication	and	iteration	with	business	

stakeholders.

Data
Preparation

Exploratory
Data Analysis

Feature
Engineering

Model
Training

Model
Validation

Deployment Monitoring

M L P R O C E S S

6E B O O K : T H E B I G B O O K O F M L O P S

Feature engineering
Data scientists clean data and apply business logic and specialized transformations to engineer features for

model	training.	These	data,	or	features,	are	split	into	training,	testing	and	validation	sets.

Model training
Data	scientists	explore	multiple	algorithms	and	hyperparameter	configurations	using	the	prepared	data,	and	

a	best-performing	model	is	determined	according	to	predefined	evaluation	metric(s).

Model validation
Prior	to	deployment	a	selected	model	is	subjected	to	a	validation	step	to	ensure	that	it	exceeds	

some baseline level of performance, in addition to meeting any other technical, business or regulatory

requirements.	This	necessitates	collaboration	between	data	scientists,	business	stakeholders	and	ML	

engineers.	

Deployment
ML	engineers	will	deploy	a	validated	model	via	batch,	streaming	or	online	serving,	depending	on	the	

requirements	of	the	use	case.

Monitoring
ML	engineers	will	monitor	deployed	models	for	signs	of	performance	degradation	or	errors.	Data	scientists	

will	often	be	involved	in	early	monitoring	phases	to	ensure	that	new	models	perform	as	expected	after	

deployment.	This	will	inform	if	and	when	the	deployed	model	should	be	updated	by	returning	to	earlier	

stages	in	the	workflow.

The	data	governance	officer	is	ultimately	responsible	for	making	sure	this	entire	process	is	compliant	with	

company	and	regulatory	policies.		

7E B O O K : T H E B I G B O O K O F M L O P S

Why should I care about MLOps?
Consider	that	the	typical	ML	application	depends	on	the	aforementioned	people	and	process,	as	well	

as	regulatory	and	ethical	requirements.	These	dependencies	change	over	time	—	and	your	models,	data	

and	code	must	change	as	well.	The	data	that	were	a	reliable	signal	yesterday	become	noise;	open	source	

libraries	become	outdated;	regulatory	environments	evolve;	and	teams	change.	ML	systems	must	be	

resilient	to	these	changes.	Yet	this	broad	scope	can	be	a	lot	for	organizations	to	manage	—	there	are	many	

moving	parts!	Addressing	these	challenges	with	a	defined	MLOps	strategy	can	dramatically	reduce	the	

iteration	cycle	of	delivering	models	to	production,	thereby	accelerating	time	to	business	value.

There	are	two	main	types	of	risk	in	ML	systems:	technical risk inherent to the system itself and risk of

noncompliance	with	external	systems.	Both	of	these	risks	derive	from	the	dependencies	described	above.	

For	example,	if	data	pipeline	infrastructure,	KPIs,	model	monitoring	and	documentation	are	lacking,	then	you	

risk	your	system	becoming	destabilized	or	ineffective.	On	the	other	hand,	even	a	well-designed	system	that	

fails	to	comply	with	corporate,	regulatory	and	ethical	requirements	runs	the	risk	of	losing	funding,	receiving	

fines	or	incurring	reputational	damage.	Recently,	one	private	company’s	data	collection	practices	were	

found	to	have	violated	the	Children’s	Online	Privacy	Protection	Rule	(COPPA).	The	FTC fined the company

$1.5	million	and	ordered it to destroy or delete the illegally harvested data, and all models or algorithms

developed	with	that	data.

With	respect	to	efficiency,	the	absence	of	MLOps	is	typically	marked	by	an	overabundance	of	manual	

processes.	These	steps	are	slower	and	more	prone	to	error,	affecting	the	quality	of	models,	data	and	code.	

Eventually	they	form	a	bottleneck,	capping	the	ability	for	a	data	team	to	take	on	new	projects.	

Seen	through	these	lenses,	the	aim	of	MLOps	becomes	clear:	improve	the	long-term	performance	

stability	and	success	rate	of	ML	systems	while	maximizing	the	efficiency	of	teams	who	build	them.	In	the	

introduction,	we	defined	MLOps	to	address	this	aim:	MLOps	is	a	set of processes and automation to

manage models, data and code	to	meet	the	two	goals	of	stable performance and long-term efficiency in

ML systems.	MLOps = ModelOps + DataOps + DevOps.

With	clear	goals,	we	are	ready	to	discuss	principles	that	guide	design	decisions	and	planning	for	MLOps.

M o d e l O p s D a t a O p s D e � O p s

8E B O O K : T H E B I G B O O K O F M L O P S

https://www.protocol.com/policy/ftc-algorithm-destroy-data-privacy
https://www.ftc.gov/system/files/ftc_gov/pdf/wwkurbostipulatedorder.pdf

Guiding principles

Always keep your business goals in mind
Just as the core purpose of ML in a business is to enable data-driven decisions and products, the core

purpose of MLOps is to ensure that those data-driven applications remain stable, are kept up to date and

continue	to	have	positive	impacts	on	the	business.	When	prioritizing	technical	work	on	MLOps,	consider	the	

business	impact:	Does	it	enable	new	business	use	cases?	Does	it	improve	data	teams’	productivity?	Does	it	

reduce operational costs or risks?

Take a data-centric approach to machine learning
Feature	engineering,	training,	inference	and	monitoring	pipelines	are	data	pipelines.	As	such,	they	need	to	be	

as	robust	as	other	production	data	engineering	processes.	Data	quality	is	crucial	in	any	ML	application,	so	

ML	data	pipelines	should	employ	systematic	approaches	to	monitoring	and	mitigating	data	quality	issues.	

Avoid	tools	that	make	it	difficult	to	join	data	from	ML	predictions,	model	monitoring,	etc.,	with	the	rest	of	

your	data.	The	simplest	way	to	achieve	this	is	to	develop	ML	applications	on	the	same	platform	used	to	

manage	production	data.	For	example,	instead	of	downloading	training	data	to	a	laptop,	where	it	is	hard	

to govern and reproduce results, secure the data in cloud storage and make that storage available to your

training	process.

Given the complexity of ML

processes and the different personas

involved, it is helpful to start from

simpler, high-level guidance. We

propose several broadly applicable

principles to guide MLOps decisions.

They inform our design choices in

later sections, and we hope they can

be adapted to support whatever your

business use case may be.

9E B O O K : T H E B I G B O O K O F M L O P S

 Implement MLOps in a modular fashion
As	with	any	software	application,	code	quality	is	paramount	for	an	ML	application.	Modularized	code	

enables	testing	of	individual	components	and	mitigates	difficulties	with	future	code	refactoring.	Define	

clear	steps	(e.g.,	training,	evaluation or	deployment),	supersteps	(e.g.,	training-to-deployment	pipeline)	and	

responsibilities to clarify the modular structure of your ML application.

Process should guide automation
We	automate	processes	to	improve	productivity	and	lower	risk	of	human	error,	but	not	every	step	of	a	

process	can	or	should	be	automated.	People	still	determine	the	business	question,	and	some	models	will	

always	need	human	oversight	before	deployment.	Therefore,	the	development	process	is	primary	and	each	

module	in	the	process	should	be	automated	as	needed.	This	allows	incremental	build-out	of	automation	

and	customization.	Furthermore,	when	it	comes	to	particular	automation	tools,	choose	those	that	align	to	

your	people	and	process.	For	example,	instead	of	building	a	model	logging	framework	around	a	generic	

database,	you	can	choose	a	specialized	tool	like	MLflow,	which	has	been	designed	with	the	ML	model	

lifecycle	in	mind.

1 0E B O O K : T H E B I G B O O K O F M L O P S

Semantics of dev, staging and prod
ML	workflows	include	the	following	key	assets:	code,	models	and	data.	These	assets	need	to	be	developed	

(dev),	tested	(staging)	and	deployed	(prod).	For	each	stage,	we	also	need	to	operate	within	an	execution	

environment.	Thus,	all	the	above	—	execution	environments,	code,	models	and	data	—	are	divided	into	dev,	

staging	and	prod.

These	divisions	can	best	be	understood	in	terms	of	quality	guarantees	and	access	control.	On	one	end,	

assets	in	prod	are	generally	business	critical,	with	the	highest	guarantee	of	quality	and	tightest	control	on	

who	can	modify	them.	Conversely,	dev	assets	are	more	widely	accessible	to	people	but	offer	no	guarantee	

of	quality.

For	example,	many	data	scientists	will	work	together	in	a	dev	environment,	freely	producing	dev	model	

prototypes.	Any	flaws	in	these	models	are	relatively	low	risk	for	the	business,	as	they	are	separate	from	

the	live	product.	In	contrast,	the	staging	environment	replicates	the	execution	environment	of	production.	

Here,	code	changes	made	in	the	dev	environment	are	tested	prior	to	code	being	deployed	to	production.	

The	staging	environment	acts	as	a	gateway	for	code	to	reach	production,	and	accordingly,	fewer	people	

are	given	access	to	staging.	Code	promoted	to	production	is	considered	a	live	product.	In	the	production	

environment, human error can pose the greatest risk to business continuity, and so the least number of

people	have	permission	to	modify	production	models.

One	might	be	tempted	to	say	that	code,	models	and	data	each	share	a	one-to-one	correspondence	with	

the	execution	environment	—	e.g.,	all	dev	code,	models	and	data	are	in	the	dev	environment.	That	is	often	

close	to	true	but	is	rarely	correct.	Therefore,	we	will	next	discuss	the	precise	semantics	of	dev,	staging	

and	prod	for	execution	environments,	code,	models	and	data.	We	also	discuss	mechanisms	for	restricting	

access	to	each.

CHAPTER 2 :

Fundamentals of MLOps

Note: In our experience with customers, there

can be variations in these three stages, such as

splitting staging into separate “test” and “QA”

substages. However, the principles remain the

same and we stick to a dev, staging and prod

setup within this paper.

1 1E B O O K : T H E B I G B O O K O F M L O P S

Execution environments
An	execution	environment	is	the	place	where	models	and	data	are	created	or	consumed	by	code.	Each	

execution	environment	consists	of	compute	instances,	their	runtimes	and	libraries,	and	automated	jobs.	

With	Databricks,	an	“environment”	can	be	defined	via	dev/staging/prod	separation	at	a	few	levels.	An	

organization could create distinct environments across multiple cloud accounts, multiple Databricks

workspaces	in	the	same	cloud	account,	or	within	a	single	Databricks	workspace.	These	separation	patterns	

are	illustrated	in	Figure	2	below.

Databricks workspace

access controls

Multiple Databricks

workspaces

Multiple clou$

accounts

staging

dev

prod

staging

dev

prod

dev

staging

prod

Figure 2

E N V I R O N M E N T S E P A R A T I O N P A T T E R N S

1 2E B O O K : T H E B I G B O O K O F M L O P S

Code
ML	project	code	is	often	stored	in	a	version	control	repository	(such	as	Git),	with	most	organizations	

using	branches	corresponding	to	the	lifecycle	phases	of	development,	staging	or	production.	There	are	a	

few	common	patterns.	Some	use	only	development	branches	(dev)	and	one	main	branch	(staging/prod).	

Others	use	main	and	development	branches	(dev),	branches	cut	for	testing	potential	releases	(staging),	and	

branches	cut	for	final	releases	(prod).	Regardless	of	which	convention	you	choose,	separation	is	enforced	

through	Git	repository	branches.

As	a	best	practice,	code	should	only	be	run	in	an	execution	environment	that	corresponds	to	it	or	in	one	

that’s	higher.	For	example,	the	dev	environment	can	run	any	code,	but	the	prod	environment	can	only	run	

prod	code.

Models
While models are usually marked as dev, staging or prod according to their lifecycle phase, it is important to

note that model and code lifecycle phases often operate asynchronously.	That	is,	you	may	want	to	push	

a	new	model	version	before	you	push	a	code	change,	and	vice	versa.	Consider	the	following	scenarios:

 To	detect	fraudulent	transactions,	you	develop	an	ML	pipeline	that	retrains	a	model	weekly.	Deploying	

the	code	can	be	a	relatively	infrequent	process,	but	each	week	a	new	model	undergoes	its	own	lifecycle	

of	being	generated,	tested	and	marked	as	“production”	to	predict	on	the	most	recent	transactions.	In	

this	case	the	code	lifecycle	is	slower	than	the	model	lifecycle.

 To	classify	documents	using	large	deep	neural	networks,	training	and	deploying	the	model	is	often	a	one-

time	process	due	to	cost.	Updates	to	the	serving	and	monitoring	code	in	the	project	may	be	deployed	

more	frequently	than	a	new	version	of	the	model.	In	this	case	the	model	lifecycle	is	slower	than	the	code.

Since	model	lifecycles	do	not	correspond	one-to-one	with	code	lifecycles,	it	makes	sense	for	model	

management	to	have	its	own	service.	MLflow and its Model Registry support managing model artifacts

directly	via	UI	and	APIs.	The	loose	coupling	of	model	artifacts	and	code	provides	flexibility	to	update	

production	models	without	code	changes,	streamlining	the	deployment	process	in	many	cases.	Model	

artifacts	are	secured	using	MLflow	access	controls	or	cloud	storage	permissions.

Databricks released Delta Lake to the open source

community in 2019. Delta Lake provides all the data

lifecycle management functions that are needed

to make cloud-based object stores reliable and

performant. This design allows clients to update

multiple objects at once and to replace a subset

of the objects with another, etc., in a serializable

manner that still achieves high parallel read/write

performance from the objects — while offering

advanced capabilities like time travel (e.g., query

point-in-time snapshots or rollback of erroneous

updates), automatic data layout optimization,

upserts, caching and audit logs.

1 3E B O O K : T H E B I G B O O K O F M L O P S

https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.1yd956s4db32

Data
Some	organizations	label	data	as	either	dev,	staging	or	prod,	depending	on	which	environment	it	originated	

in.	For	example,	all	prod	data	is	produced	in	the	prod	environment,	but	dev	and	staging	environments	may	

have	read-only	access	to	them.	Marking	data	this	way	also	indicates	a	guarantee	of	data	quality:	dev	data	

may	be	temporary	or	not	meant	for	wider	use,	whereas	prod	data	may	offer	stronger	guarantees	around	

reliability	and	freshness.	Access	to	data	in	each	environment	is	controlled	with	table	access	controls	

(AWS | Azure | GCP)	or	cloud	storage	permissions.		

In	summary,	when	it	comes	to	MLOps,	you	will	always	have	operational	separation	between	dev,	staging	and	

prod.	Assets	in	dev	will	have	the	least	restrictive	access	controls	and	quality	guarantees,	while	those	in	prod	

will	be	the	highest	quality	and	tightly	controlled.

AS S E T S E MANTI CS S E PAR ATE D BY

Execution	environments

Labeled	according	to	where	
development, testing and connections
with	production	systems	happen

Cloud	provider	and	Databricks	
Workspace access controls

Models Labeled according to model lifecycle
phase

MLflow	access	controls	or	cloud	
storage permissions

Data

Labeled according to its origin
in	dev,	staging	or	prod	execution	
environments

Table access controls or cloud storage
permissions

Code Labeled	according	to	software	
development lifecycle phase

Git repository branches

Table 1

1 4E B O O K : T H E B I G B O O K O F M L O P S

https://docs.databricks.com/security/access-control/table-acls/index.html
https://docs.microsoft.com/en-us/azure/databricks/security/access-control/table-acls/
https://docs.gcp.databricks.com/security/access-control/table-acls/index.html

ML deployment patterns
The fact that models and code can be managed separately results in multiple possible patterns for getting

ML	artifacts	through	staging	and	into	production.	We	explain	two	major	patterns	below.

These	two	patterns	differ	in	terms	of	whether	the	model	artifact	or	the	training	code	that	produces	the	

model	artifact	is	promoted	toward	production.

dev

staging prod

dev

staging prod

D E P L O Y M O D E L S

D E P L O Y C O D E

1 5E B O O K : T H E B I G B O O K O F M L O P S

Deploy models
In	the	first	pattern,	the	model	artifact	is	generated	by	training	code	in	the	development	environment.	

This	artifact	is	then	tested	in	staging	for	compliance	and	performance	before	finally	being	deployed	into	

production.	This	is	a	simpler	handoff	for	data	scientists,	and	in	cases	where	model	training	is	prohibitively	

expensive,	training	the	model	once	and	managing	that	artifact	may	be	preferable.	However,	this	simpler	

architecture	comes	with	limitations.	If	production	data	is	not	accessible	from	the	development	environment	

(e.g.,	for	security	reasons),	this	architecture	may	not	be	viable.	This	architecture	does	not	naturally	support	

automated	model	retraining.	While	you	could	automate	retraining	in	the	development	environment,	you	

would	then	be	treating	“dev”	training	code	as	production	ready,	which	many	deployment	teams	would	not	

accept.	This	option	hides	the	fact	that	ancillary	code	for	featurization,	inference	and	monitoring	needs	to	be	

deployed	to	production,	requiring	a	separate	code	deployment	path.

Deploy code
In the second pattern, the code to train models is developed in the dev environment, and this code is

moved	to	staging	and	then	production.	Models	will	be	trained	in	each	environment:	initially	in	the	dev	

environment	as	part	of	model	development,	in	staging	(on	a	limited	subset	of	data)	as	part	of	integration	

tests,	and	finally	in	the	production	environment	(on	the	full	production	data)	to	produce	the	final	model.	

If	an	organization	restricts	data	scientists’	access	to	production	data	from	dev	or	staging	environments,	

deploying	code	allows	training	on	production	data	while	respecting	access	controls.	Since	training	code	

goes	through	code	review	and	testing,	it	is	safer	to	set	up	automated	retraining.	Ancillary	code	follows	the	

same	pattern	as	model	training	code,	and	both	can	go	through	integration	tests	in	staging.	However,	the	

learning curve for handing code off to collaborators can be steep for many data scientists, so opinionated

project	templates	and	workflows	are	helpful.	Finally,	data	scientists	need	visibility	into	training	results	from	

the	production	environment,	for	only	they	have	the	knowledge	to	identify	and	fix	ML-specific	issues.

1 6E B O O K : T H E B I G B O O K O F M L O P S

The	diagram	below	contrasts	the	code	lifecycle	for	the	above	deployment	patterns	across	the	different	

execution	environments.

In general we recommend following the “deploy code” approach, and the reference architecture in

this document is aligned to it.	Nevertheless,	there	is	no	perfect	process	that	covers	every	scenario,	and	

the	options	outlined	above	are	not	mutually	exclusive.	Within	a	single	organization,	you	may	find	some	use	

cases	deploying	training	code	and	others	deploying	model	artifacts.	Your	choice	of	process	will	depend	on	

the	business	use	case,	resources	available	and	what	is	most	likely	to	succeed.

Model

training

Deploy

pipelines

Code

development

Continuous

deployment

Staging

environment

Integration

tests

Production

environment

Production

environment

Development

environment

Development

environment

Staging

environment

Unit

tests

Deploy models

Deploy code

1 7E B O O K : T H E B I G B O O K O F M L O P S

D E PLOY M O D E LS D E PLOY CO D E

Process

Dev
Develop training code.
Develop ancillary code.1
Train model on prod data.

 Promote model and ancillary code.

Develop training code.
Develop ancillary code.

 Promote code.

Staging
Test model and ancillary code.

 Promote model and ancillary code.

Train model on data subset.
Test ancillary code.

 Promote code.

Prod
Deploy model.
Deploy ancillary pipelines.

Train model on prod data.
Test model.
Deploy model.
Deploy ancillary pipelines.

Trade-offs

Automation Does not support automated retraining in locked-down env. Supports automated retraining in locked-down env.

Data access control Dev env needs read access to prod training data. Only prod env needs read access to prod training data.

Reproducible models Less eng control over training env, so harder to ensure reproducibility. Eng control over training env, which helps to simplify reproducibility.

Data science familiarity DS team builds and can directly test models in their dev env. DS team must learn to write and hand off modular code to eng.

Support for large projects

 This pattern does not force the DS team to use modular code for
model training, and it has less iterative testing.

 This pattern forces the DS team to use modular code and
iterative testing, which helps with coordination and development
in larger projects.

Eng setup and maintenance Has the simplest setup, with less CI/CD infra required. Requires CI/CD infra for unit and integration tests, even for
one-off models.

When to use

Use this pattern when your model is a one-off or when model training
is very expensive.

Use when dev, staging and prod are not strictly separated envs.

Use this pattern by default.

Use when dev, staging and prod are strictly separated envs.

Table 2 1 “ Ancillary	code”	refers	to	code	for	ML	pipelines	other	than	the	model	training	pipeline.	Ancillary	code	could	be	featurization,	inference,	monitoring	or	other	pipelines.

1 8E B O O K : T H E B I G B O O K O F M L O P S

Architecture components
Before	unpacking	the	reference	architecture,	take	a	moment	to	familiarize	yourself	with	the	Databricks	

features	used	to	facilitate	MLOps	in	the	workflow	prescribed.

Data Lakehouse
A Data Lakehouse architecture	unifies	the	best	elements	of	data	lakes	and	data	warehouses	—	delivering	

data	management	and	performance	typically	found	in	data	warehouses	with	the	low-cost,	flexible	object	

stores	offered	by	data	lakes.	Data	in	the	lakehouse	are	typically	organized	using	a	“medallion”	architecture	

of	Bronze,	Silver	and	Gold	tables	of	increasing	refinement	and	quality.

MLflow
MLflow	is	an	open	source	project	for	managing	the	end-to-end	machine	learning	lifecycle.	It	has	the	

following	primary	components:

 Tracking:	Allows	you	to	track	experiments	to	record	and	compare	parameters,	metrics	and	model	

artifacts.	See	documentation	for	AWS | Azure | GCP.

 Models (“MLflow flavors”):	Allows	you	to	store	and	deploy	models	from	any	ML	library	to	a	variety	of	

model	serving	and	inference	platforms.	See	documentation	for	AWS | Azure | GCP.

 Model Registry:	Provides	a	centralized	model	store	for	managing	models’	full	lifecycle	stage	transitions:	

from	staging	to	production,	with	capabilities	for	versioning	and	annotating.	The	registry	also	provides	

webhooks	for	automation	and	continuous	deployment.	See	documentation	for	AWS | Azure | GCP.

Databricks	also	provides	a	fully	managed	and	hosted	version	of	MLflow	with	enterprise	security	features,	

high	availability,	and	other	Databricks	workspace	features	such	as	experiment	and	run	management	and	

notebook	revision	capture.	MLflow	on	Databricks	offers	an	integrated	experience	for	tracking	and	securing	

machine	learning	model	training	runs	and	running	machine	learning	projects.

CHAPTER 3:

MLOps Architecture
and Process

Cloud Data Lake

All structured and unstructured data

Delta Lake

Data relia)ility and .erfor2ance

Unity Catalog

Fine-grained governance for data and AI

Lakehouse Platform

Data

Warehousing

Data

Engineering

Data

Streaming

Data S�ien��

and ML

1 9E B O O K : T H E B I G B O O K O F M L O P S

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.mlflow.org/
https://docs.databricks.com/applications/mlflow/tracking.html
https://docs.microsoft.com/en-us/azure/databricks/applications/mlflow/tracking
https://docs.gcp.databricks.com/applications/mlflow/tracking.html
https://docs.databricks.com/applications/mlflow/models.html
https://docs.microsoft.com/en-us/azure/databricks/applications/mlflow/models
https://docs.gcp.databricks.com/applications/mlflow/models.html
https://docs.databricks.com/applications/mlflow/model-registry.html
https://docs.microsoft.com/en-us/azure/databricks/applications/mlflow/model-registry
https://docs.gcp.databricks.com/applications/mlflow/model-registry.html

Databricks and MLflow Autologging
Databricks	Autologging	is	a	no-code	solution	that	extends	MLflow automatic logging to deliver automatic

experiment	tracking	for	machine	learning	training	sessions	on	Databricks.	Databricks	Autologging	

automatically	captures	model	parameters,	metrics,	files	and	lineage	information	when	you	train	models	with	

training	runs	recorded	as	MLflow	tracking	runs.	See	documentation	for	AWS | Azure | GCP.

Feature Store
The	Databricks	Feature	Store	is	a	centralized	repository	of	features.	It	enables	feature	sharing	and	discovery	

across an organization and also ensures that the same feature computation code is used for model training

and	inference.	See	documentation	for	AWS | Azure | GCP.

MLflow Model Serving
MLflow	Model	Serving	allows	you	to	host	machine	learning	models	from	Model	Registry	as	REST	endpoints	

that	are	updated	automatically	based	on	the	availability	of	model	versions	and	their	stages.	See	

documentation for AWS | Azure | GCP.

Databricks SQL
Databricks	SQL	provides	a	simple	experience	for	SQL	users	who	want	to	run	quick	ad	hoc	queries	on	their	

data	lake,	create	multiple	visualization	types	to	explore	query	results	from	different	perspectives,	and	build	

and share dashboards.	See documentation for AWS | Azure | GCP.

Databricks Workflows and Jobs
Databricks	Workflows	(Jobs	and	Delta	Live	Tables)	can	execute	pipelines	in	automated,	non-interactive	

ways.	For	ML,	Jobs	can	be	used	to	define	pipelines	for	computing	features,	training	models,	or	other	ML	

steps or pipelines.	See documentation for AWS | Azure | GCP.

2 0E B O O K : T H E B I G B O O K O F M L O P S

https://mlflow.org/docs/latest/tracking.html#automatic-logging
https://docs.databricks.com/applications/mlflow/databricks-autologging.html
https://docs.microsoft.com/en-us/azure/databricks/applications/mlflow/databricks-autologging
https://docs.gcp.databricks.com/applications/mlflow/databricks-autologging.html
https://docs.databricks.com/applications/machine-learning/feature-store/index.html
https://docs.microsoft.com/en-us/azure/databricks/applications/machine-learning/feature-store/
https://docs.gcp.databricks.com/applications/machine-learning/feature-store/index.html
https://docs.databricks.com/applications/mlflow/model-serving.html
https://docs.microsoft.com/en-us/azure/databricks/applications/mlflow/model-serving
https://docs.gcp.databricks.com/applications/mlflow/model-serving.html
https://docs.databricks.com/sql/index.html
https://docs.microsoft.com/en-us/azure/databricks/sql/
https://docs.gcp.databricks.com/sql/index.html
https://docs.databricks.com/data-engineering/jobs/index.html
https://docs.microsoft.com/en-us/azure/databricks/data-engineering/jobs/
https://docs.gcp.databricks.com/data-engineering/jobs/index.html

Reference architecture
We	are	now	ready	to	review	a	general	reference	architecture	for	implementing	MLOps	on	the	Databricks	

Lakehouse platform using the recommended “deploy code”	pattern	from	earlier.	This	is	intended	to	cover	

the	majority	of	use	cases	and	ML	techniques,	but	it	is	by	no	means	comprehensive.	When	appropriate,	

we	will	highlight	alternative	approaches	to	implementing	different	parts	of	the	process.

We	begin	with	an	overview	of	the	system	end-to-end,	followed	by	more	detailed	views	of	the	process	

in	development,	staging	and	production	environments.	These	diagrams	show	the	system	as	it	operates	

in	a	steady	state,	with	the	finer	details	of	iterative	development	cycles	omitted.	This	structure	is	

summarized	below.

 Data

 Exploratory	data	analysis (EDA)

 Project code

 Feature table refresh

 Model training

				Commit	code

 Merge request

				Unit	tests	(CI)

				Integration	tests	(CI)

 Merge

				Cut	release	branch

 Feature table refresh

 Model training

				Continuous	deployment	(CD)

				Online	serving	(REST	APIs)

				Inference:	batch	or	streaming

 Monitoring

 Retraining

O V E R V I E W

dev staging prod

2 1E B O O K : T H E B I G B O O K O F M L O P S

Overview

Here	we	see	the	overall	process	for	deploying	code	and	model	artifacts,	the	inputs	and	outputs	for	pipelines,	

and	model	lifecycle	stages	in	production.	Code	source	control	is	the	primary	conduit	for	deploying	ML	

pipelines	from	development	to	production.	Pipelines	and	models	are	prototyped	on	a	dev	branch	in	the	

development	environment,	and	changes	to	the	codebase	are	committed	back	to	source	control.	Upon	merge	

request	to	the	staging	branch	(usually	the	“main”	branch),	a	continuous	integration	(CI)	process	tests	the	

code	in	the	staging	environment.	If	the	tests	pass,	new	code	can	be	deployed	to	production	by	cutting	a	

code	release.	In	production,	a	model	is	trained	on	the	full	production	data	and	pushed	to	the	MLflow	Model	

Registry.	A	continuous	deployment	(CD)	process	tests	the	model	and	promotes	it	toward	the	production	

stage	in	the	registry.	The	Model	Registry’s	production	model	can	be	served	via	batch,	streaming	or	REST	API.	

Ongoing	feature	engineering	and	monitoring	pipelines	also	run	in	production.

Exploratory

data analysis

. . .

dev

Inference & serving

dev

Feature table refresh

dev

Model training

dev

Monitoring

release

Inference & serving

release

Feature

table refresh

release

ModeË

training

release

Continuous

Deployment (CD)

release

Unit tests

(CI)

dev

Integration

tests (CI)

dev

dev staging (main) release

Development

environment

Staging

environment

Source control

Production

environment

Create dev branch C} trigger MergeCommit code

Merge reIuest to staging Cut release branch Pull from release branch to production

Model Registry

StÀge{ StÀgingStÀge{ �one StÀge{ Production

Push model to registrÁ Load model for testing Load model for inference

Promote to production

Feature tablesFeature tablesFeature tables Metrics tablesData tablesData tables

Figure 3

2 2E B O O K : T H E B I G B O O K O F M L O P S

Dev
In the development environment, data scientists and ML engineers can collaborate on all pipelines in

an	ML	project,	committing	their	changes	to	source	control.	While	engineers	may	help	to	configure	this	

environment,	data	scientists	typically	have	significant	control	over	the	libraries,	compute	resources	and	

code	that	they	use.

Figure 4 Development environment

dev

. . .

Inference: Streaming or batch

Feature table refresh

dev

04

Data

preparation

Featurization

Model training

dev

0Î

Training and

tuning

Evaluation

0�

0�

0	

E�ploratory

data analysis

Source control

dev

models

 train.py

 deploy.py

 in(erence.py

 monitoring.py

dat<

 (eaturization.py

tests

 unit.py

 integration.py

Tracking Server

Metrics Parameters Models

Commit code

Create dev mrancg

0u

prod data

Feature tamles Bronze / Silver / Gold

dev data

Feature tamles Temp tamles

Lakehouse

2 3E B O O K : T H E B I G B O O K O F M L O P S

Data
Data	scientists	working	in	the	dev	environment	possess	read-only	access	to	production	data.	They	also	

require	read-write	access	to	a	separate	dev	storage	environment	to	develop	and	experiment	with	new	

features	and	other	data	tables.

Exploratory data analysis (EDA)
The	data	scientist	explores	and	analyzes	data	in	an	interactive,	iterative	process.	This	process	is	used	to	

assess	whether	the	available	data	has	the	potential	to	address	the	business	problem.	EDA	is	also	where	the	

data	scientist	will	begin	discerning	what	data	preparation	and	featurization	are	required	for	model	training.	

This	ad	hoc	process	is	generally	not	part	of	a	pipeline	that	will	be	deployed	in	other	execution	environments.	

Project code
This	is	a	code	repository	containing	all	of	the	pipelines	or	modules	involved	in	the	ML	system.	Dev	branches	

are	used	to	develop	changes	to	existing	pipelines	or	to	create	new	ones.	Even	during	EDA	and	initial	phases	of	

a	project,	it	is	recommended	to	develop	within	a	repository	to	help	with	tracking	changes	and	sharing	code.	

2 4E B O O K : T H E B I G B O O K O F M L O P S

Feature table refresh
This	pipeline	reads	from	raw	data	tables	and	feature	tables	and	writes	to	tables	in	the	Feature	Store.	The	

pipeline	consists	of	two	steps:

 Data preparation

This	step	checks	for	and	corrects	any	data	quality	issues	prior	to	featurization.	

 Featurization

In	the	dev	environment,	new	features	and	updated	featurization	logic	can	be	tested	by	writing	to	feature	

tables	in	dev	storage,	and	these	dev	feature	tables	can	be	used	for	model	prototyping.	Once	this	

featurization	code	is	promoted	to	production,	these	changes	will	affect	the	production	feature	tables.	

Features	already	available	in	production	feature	tables	can	be	read	directly	for	development.

In	some	organizations,	feature	engineering	pipelines	are	managed	separately	from	ML	projects.	In	such	

cases,	the	featurization	pipeline	can	be	omitted	from	this	architecture.

2 5E B O O K : T H E B I G B O O K O F M L O P S

Model training
Data	scientists	develop	the	model	training	pipeline	in	the	dev	environment	with	dev	or	prod	feature	tables.

 Training and tuning

The	training	process	reads	features	from	the	feature	store	and/or	Silver-	or	Gold-level	Lakehouse	tables,	

and it logs model parameters, metrics and artifacts to the MLflow tracking server.	After	training	and	

hyperparameter	tuning,	the	final	model	artifact	is	logged	to	the	tracking	server	to	record	a	robust	link	

between	the	model,	its	input	data,	and	the	code	used	to	generate	it.	

 Evaluation

Model	quality	is	evaluated	by	testing	on	held-out	data.	The	results	of	these	tests	are	logged	to	the	

MLflow	tracking	server.	

If governance requires additional metrics or supplemental documentation about the model, this is the

time	to	add	them	using	MLflow	tracking.	Model	interpretations	(e.g.,	plots	produced	by	SHAP or LIME)	

and	plain	text	descriptions	are	common,	but	defining	the	specifics	for	such	governance	requires	input	

from	business	stakeholders	or	a	data	governance	officer.

 Model output

The	output	of	this	pipeline	is	an	ML	model	artifact	stored	in	the	MLflow	tracking	server.	When	this	

training	pipeline	is	run	in	staging	or	production,	ML	engineers	(or	their	CI/CD	code)	can	load	the	model	

via	the	model	URI	(or	path)	and	then	push	the	model	to	the	Model	Registry	for	management	and	testing.	

Commit code
After developing code for featurization, training, inference and other pipelines, the data scientist or

ML	engineer	commits	the	dev	branch	changes	into	source	control.	This	section	does	not	discuss	the	

continuous	deployment,	inference	or	monitoring	pipelines	in	detail;	see	the	“Prod”	section	below	for	more	

information	on	those.	

2 6E B O O K : T H E B I G B O O K O F M L O P S

https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.1yd956s4db32
https://shap.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/1602.04938

Staging
The	transition	of	code	from	development	to	production	occurs	in	the	staging	environment.	This	code	

includes	model	training	code	and	ancillary	code	for	featurization,	inference,	etc.	Both	data	scientists	and	ML	

engineers	are	responsible	for	writing	tests	for	code	and	models,	but	ML	engineers	manage	the	continuous	

integration	pipelines	and	orchestration.

Staging environment

Integration tests (CI)

dev

Feature

Store tests

Model

training tests

Model

deployment

tests

Model

monitoring

tests

Inference

tests

03

0®

Source control

Tracking Server

Model Registry

0�

staging data

Feature tables Temp tables

Lakehouse

dev staging >main< release

Merge reHuest to staging Cut release branch

0] 0_

Unit tests

(CI)

dev

CI trigger Merge

Figure 5

2 7E B O O K : T H E B I G B O O K O F M L O P S

Data
The	staging	environment	may	have	its	own	storage	area	for	testing	feature	tables	and	ML	pipelines.	This	

data	is	generally	temporary	and	only	retained	long	enough	to	run	tests	and	to	investigate	test	failures.	This	

data	can	be	made	readable	from	the	development	environment	for	debugging.

Merge code
 Merge request

The	deployment	process	begins	when	a	merge	(or	pull)	request	is	submitted	against	the	staging	branch	

of	the	project	in	source	control.	It	is	common	to	use	the	“main”	branch	as	the	staging	branch.	

 Unit tests (CI)

This	merge	request	automatically	builds	source	code	and	triggers	unit	tests.	If	tests	fail,	the	merge	

request	is	rejected.

2 8E B O O K : T H E B I G B O O K O F M L O P S

Integration tests (CI)
The	merge	request	then	goes	through	integration	tests,	which	run	all	pipelines	to	confirm	that	they	function	

correctly	together.	The	staging	environment	should	mimic	the	production	environment	as	much	as	is	

reasonable,	running	and	testing	pipelines	for	featurization,	model	training,	inference	and	monitoring.

Integration	tests	can	trade	off	fidelity	of	testing	for	speed	and	cost.	For	example,	when	models	are	

expensive	to	train,	it	is	common	to	test	model	training	on	small	data sets	or	for	fewer	iterations	to	reduce	

cost.		When	models	are	deployed	behind	REST	APIs,	some	high-SLA	models	may	merit	full-scale	load	

testing	within	these	integration	tests,	whereas	other	models	may	be	tested	with	small	batch	jobs	or	a	few	

queries	to	temporary	REST	endpoints.

Once	integration	tests	pass	on	the	staging	branch,	the	code	may	be	promoted	toward	production.

 Merge

If	all	tests	pass,	the	new	code	is	merged	into	the	staging	branch	of	the	project.		If	tests	fail,	the	CI/CD	

system	should	notify	users	and	post	results	on	the	merge	(pull)	request.

Note:	It	can	be	useful	to	schedule	periodic	integration	tests	on	the	staging	branch,	especially	if	the	branch	is	

updated	frequently	with	concurrent	merge	requests.	

Cut release branch
Once	CI	tests	have	passed	on	a	commit	in	the	staging	branch,	ML	engineers	can	cut	a	release	branch	from	

that	commit.

2 9E B O O K : T H E B I G B O O K O F M L O P S

Prod
The	production	environment	is	typically	managed	by	a	select	set	of	ML	engineers	and	is	where	ML	pipelines	

directly	serve	the	business	or	application.	These	pipelines	compute	fresh	feature	values,	train	and	test	new	

model	versions,	publish	predictions	to	downstream	tables	or	applications,	and	monitor	the	entire	process	to	

avoid	performance	degradation	and	instability.	While	we	illustrate	batch	and	streaming	inference	alongside	

online	serving	below,	most	ML	applications	will	use	only	one	of	these	methods,	depending	on	the	business	

requirements.

Production environment

Compliance

checks

Compare

Staging vs

Production

Request model

transition to

Production

03

release

Data ingest

Model

inference

Pu�lish

predictions

0

release

Data ingest

Trigger model training

Check model

performance

and data drift

Pu�lish

metrics

0�

0�

release

Model training

Training

and tuning

Evaluation

0B

release

Online serving

Ena�le online

serving

Log

requests and

predictions

0b

release

Feature table refresh

Data

preparation

Featurization

0~

release

Model Registry

Stage: Staging

Continuous Deployment (CD)

Inference: Batch or streaming

Stage: None Stage: Production

Register and request transition

Load model for testing

Monitoring

Promote to staging Promote to production

Load model for testing Load model for inference

Load model for

online serving

Feature ta�les Feature ta�lesData ta�les Monitoring ta�les

Lakehouse

Figure 6

3 0E B O O K : T H E B I G B O O K O F M L O P S

Though	data	scientists	may	not	have	write	or	compute	access	in	the	production	environment,	it	is	

important	to	provide	them	with	visibility	to	test	results,	logs,	model	artifacts	and	the	status	of	ML	pipelines	

in	production.	This	visibility	allows	them	to	identify	and	diagnose	problems	in	production.

Feature table refresh
This	pipeline	transforms	the	latest	production	Lakehouse	data	into	production	feature	tables.	It	can	use	batch	

or	streaming	computation,	depending	on	the	freshness	requirements	for	downstream	training	and	inference.	

The	pipeline	can	be	defined	as	a	Databricks Job	which	is	scheduled,	triggered	or	continuously	running.

Model training
The	model	training	pipeline	runs	either	when	code	changes	affect	upstream	featurization	or	training	logic,	or	

when	automated	retraining	is	scheduled	or	triggered.	This	pipeline	runs	on	the	full	production	data.

 Training and tuning

During the training process, logs are recorded to the MLflow tracking server.		These	include	model	

metrics,	parameters,	tags	and	the	model	itself.	

During development, data scientists may test many algorithms and hyperparameters, but it is common

to	restrict	those	choices	to	the	top-performing	options	in	the	production	training	code.	Restricting	tuning	

can	reduce	the	variance	from	tuning	in	automated	retraining,	and	it	can	make	training	and	tuning	faster.

 Evaluation

Model	quality	is	evaluated	by	testing	on	held-out	production	data.	The	results	of	these	tests	are	

logged	to	the	MLflow	tracking	server.	During	development,	data	scientists	will	have	selected	meaningful	

evaluation	metrics	for	the	use	case,	and	those	metrics	or	their	custom	logic	will	be	used	in	this	step.	

 Register and request transition

Following	model	training,	the	model	artifact	is	registered	to	the	MLflow Model Registry of the production

environment,	set	initially	to	’stage=None’.	The	final	step	of	this	pipeline	is	to	request	a	transition	of	the	

newly	registered	model	to	‘stage=Staging’.

3 1E B O O K : T H E B I G B O O K O F M L O P S

https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.rxs6npet1ull
https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.1yd956s4db32
https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.1yd956s4db32

Continuous deployment (CD)
The	CD	pipeline	is	executed	when	the	training	pipeline	finishes	and	requests	to	transition	the	model	to	

‘stage=Staging’.	There	are	three	key	tasks	in	this	pipeline:

 Compliance checks

These	tests	load	the	model	from	the	Model	Registry,	perform	compliance	checks	(for	tags,	documentation,	

etc.),	and	approve	or	reject	the	request	based	on	test	results.	If	compliance	checks	require	human	

expertise,	this	automated	step	can	compute	statistics	or	visualizations	for	people	to	review	in	a	manual	

approval	step	at	the	end	of	the	CD	pipeline.	Regardless	of	the	outcome,	results	for	that	model	version	

are	recorded	to	the	Model	Registry	through	metadata	in	tags	and	comments	in	descriptions.	

The	MLflow	UI	can	be	used	to	manage	stage	transition	requests	manually,	but	requests	and	transitions	

can	be	automated	via	MLflow	APIs	and	webhooks.	If	the	model	passes	the	compliance	checks,	then	

the	transition	request	is	approved	and	the	model	is	promoted	to	‘stage=Staging’.	If	the	model	fails,	the	

transition	request	is	rejected	and	the	model	is	moved	to	‘stage=Archived’	in	the	Model	Registry.

 Compare staging vs. production

To	prevent	performance	degradation,	models	promoted	to	‘stage=Staging’	must	be	compared	to	the	

‘stage=Production’	models	they	are	meant	to	replace.	The	metric(s)	for	comparison	should	be	defined	

according	to	the	use	case,	and	the	method	for	comparison	can	vary	from	canary	deployments	to	A/B	

tests.	All	comparison	results	are	saved	to	metrics	tables	in	the	lakehouse.	

If	this	is	the	first	deployment	and	there	is	no	‘stage=Production’	model	yet,	the	‘stage=Staging’	model	

should	be	compared	to	a	business	heuristic	or	other	threshold	as	a	baseline.	For	a	new	version	

of	an	existing	‘stage=Production’	model,	the	‘stage=Staging’	model	is	compared	with	the	current	

‘stage=Production’	model.

3 2E B O O K : T H E B I G B O O K O F M L O P S

https://docs.databricks.com/applications/mlflow/model-registry-webhooks.html

 Request model transition to production

If the candidate model passes the comparison tests, a request is made to transition it to

‘stage=Production’	in	the	Model	Registry.	As	with	other	stage	transition	requests,	notifications,	

approvals	and	rejections	can	be	managed	manually	via	the	MLflow	UI	or	automatically	through	APIs	and	

webhooks. This is also a good time to consider human oversight, as it is the last step before a model is

fully	available	to	downstream	applications. A	person	can	manually	review	the	compliance	checks	and	

performance	comparisons	to	perform	checks	which	are	difficult	to	automate.

Online serving (REST APIs)
For	lower	throughput	and	lower	latency	use	cases,	online	serving	is	generally	necessary.	With	MLflow,	it	is	

simple to deploy models to Databricks Model Serving, cloud provider serving endpoints, or on-prem or

custom	serving	layers.

In	all	cases,	the	serving	system	loads	the	production	model	from	the	Model	Registry	upon	initialization.	On	

each	request,	it	fetches	features	from	an	online	Feature	Store,	scores	the	data	and	returns	predictions.	The	

serving	system,	data	transport	layer	or	the	model	itself	could	log	requests	and	predictions.

Inference: batch or streaming
This pipeline is responsible for reading the latest data from the Feature Store, loading the model from

‘stage=Production’	in	the	Model	Registry,	performing	inference	and	publishing	predictions.	For	higher	

throughput, higher latency use cases, batch or streaming inference is generally the most cost-effective

option.	

A	batch	job	would	likely	publish	predictions	to	Lakehouse	tables,	over	a	JDBC	connection,	or	to	flat	files.	

A	streaming	job	would	likely	publish	predictions	either	to	Lakehouse	tables	or	to	message	queues	like	

Apache	Kafka.®

3 3E B O O K : T H E B I G B O O K O F M L O P S

https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.72shqep1kelf

Monitoring
Input	data	and	model	predictions	are	monitored,	both	for	statistical	properties	(data	drift,	model	

performance,	etc.)	and	for	computational	performance	(errors,	throughput,	etc.).	These	metrics	are	

published for dashboards and alerts.

 Data ingestion

This pipeline reads in logs from batch, streaming or online inference.

 Check accuracy and data drift

The	pipeline	then	computes	metrics	about	the	input	data,	the	model’s	predictions	and	the	infrastructure	

performance.	Metrics	that	measure	statistical	properties	are	generally	chosen	by	data	scientists	during	

development,	whereas	metrics	for	infrastructure	are	generally	chosen	by	ML	engineers.

 Publish metrics

The	pipeline	writes	to	Lakehouse	tables	for	analysis	and	reporting.	Tools	such	as	Databricks SQL are used

to	produce	monitoring	dashboards,	allowing	for	health	checks	and	diagnostics.	The	monitoring	job	or	the	

dashboarding	tool	issues	notifications	when	health	metrics	surpass	defined	thresholds.

 Trigger model training

When	the	model	monitoring	metrics	indicate	performance	issues,	or	when	a	model	inevitably	becomes	

out	of	date,	the	data	scientist	may	need	to	return	to	the	development	environment	and	develop	a	new	

model version.

3 4E B O O K : T H E B I G B O O K O F M L O P S

https://docs.google.com/document/d/1yCODhUuimWJHR8Sc-sd6xY7vJuN6nPek2pNrfhv7hU4/edit#heading=h.nsthucrt9k77

Note: While automated retraining is supported

in this architecture, it isn’t required, and caution

must be taken in cases where it is implemented.

It is inherently difficult to automate selecting the

correct action to take from model monitoring

alerts. For example, if data drift is observed, does

it indicate that we should automatically retrain, or

does it indicate that we should engineer additional

features to encode some new signal in the data?

Retraining
This	architecture	supports	automatic	retraining	using	the	same	model	training	pipeline	above.	While	we	

recommend	beginning	with	manually	triggered	retraining,	organizations	can	add	scheduled	and/or	triggered	

retraining	when	needed.

 Scheduled

If	fresh	data	are	regularly	made	available,	rerunning	model	training	on	a	defined	schedule	can	help	models	

to	keep	up	with	changing	trends	and	behavior.

 Triggered

If the monitoring pipeline can identify model performance issues and send alerts, it can additionally

trigger	retraining.	For	example,	if	the	distribution	of	incoming	data	changes	significantly	or	if	the	model	

performance	degrades,	automatic	retraining	and	redeployment	can	boost	model	performance	with	

minimal human intervention.

When	the	featurization	or	retraining	pipelines	themselves	begin	to	exhibit	performance	issues,	the	data	

scientist	may	need	to	return	to	the	dev	environment	and	resume	experimentation	to	address	such	issues.

3 5E B O O K : T H E B I G B O O K O F M L O P S

©	Databricks	2022.	All	rights	reserved.	Apache,	Apache	Spark,	Spark	and	the	Spark	logo	are	trademarks	of	the	Apache	Software	Foundation.	Privacy Policy | Terms	of	Use

About Databricks

Databricks	is	the	data	and	AI	company.	More	than	

7,000	organizations	worldwide	—	including	Comcast,	

Condé	Nast,	H&M	and	over	40%	of	the	Fortune	

500	—	rely	on	the	Databricks	Lakehouse	Platform	

to	unify	their	data,	analytics	and	AI.	Databricks	is	

headquartered	in	San	Francisco,	with	offices	around	

the	globe.	Founded	by	the	original	creators	of	

Apache	Spark™,	Delta	Lake	and	MLflow,	Databricks	

is	on	a	mission	to	help	data	teams	solve	the	world’s	

toughest	problems.	To	learn	more,	follow	Databricks	

on Twitter, LinkedIn and Facebook.

Sign up for a free trial

https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use
https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
https://databricks.com/try-databricks

